
Frontiers in Artificial Intelligence Research Volume 2 Issue 1, 2025 

ISSN: 3079-6342  

 

 26 

Graph Neural Network for Music Style Classification 

Katarzyna Nowak1, Tomasz Zieliński1 
1Warsaw School of Computer Science Lewartowskiego 17 00-169 Warsaw, Poland 

Abstract 

Music style classification plays a fundamental role in music recommendation, retrieval, 
and organization systems. Traditional classification models primarily rely on audio 
features or symbolic representations, such as mel-frequency cepstral coefficients or 
Musical Instrument Digital Interface (MIDI) sequences. However, these models often 
ignore the rich structural and relational information inherent in musical compositions. 
This study proposes a novel graph neural network (GNN)-based framework for music 
style classification that represents each piece of music as a graph, capturing the 
relationships among notes, chords, and temporal transitions. By modeling these 
components as interconnected nodes, the GNN is able to learn stylistic features that 
extend beyond local patterns, such as harmonic progressions, motif repetitions, and 
inter-note dependencies. 
To enhance model performance, the framework incorporates a dual-graph architecture 
combining intra-piece and inter-piece structures, enabling the GNN to generalize across 
compositions while retaining individual stylistic identities. Experimental results on 
publicly available symbolic music datasets demonstrate that the proposed model 
outperforms traditional convolutional neural network (CNN) and recurrent neural 
network (RNN)-based models in classification accuracy and robustness across multiple 
musical genres. These findings highlight the potential of graph-based deep learning for 
extracting structural patterns critical to music understanding and classification. 
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1. Introduction 

Music style classification is a key task in the field of music information retrieval, with wide 
applications in automated music recommendation, content-based search, digital music 
archiving, and genre-based analysis. Traditionally, this task has been approached using 
statistical learning or deep learning methods applied to low-level audio features or symbolic 
data, such as pitch sequences and rhythm patterns. While these approaches have achieved 
moderate success, they often treat music as a flat sequence or a grid-based input, overlooking 
the complex and structured relationships between musical elements such as notes, chords, 
motifs, and harmonic functions [1]. 

Recent advancements in representation learning have introduced the possibility of modeling 
music as a graph, where the structural and temporal dependencies between musical 
components can be explicitly captured [2]. Graph-based representations allow for a more 
natural encoding of musical structure by treating elements such as notes or bars as nodes and 
their harmonic or temporal relationships as edges [3]. For example, repeated motifs, sequential 
intervals, and harmonic progressions can all be represented in a graph format, enabling a 
neural model to understand long-range dependencies and non-linear structures that are 
characteristic of different musical styles [4]. 
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Graph neural networks (GNNs) have demonstrated strong performance in various domains 
where data is inherently relational, including natural language processing, social network 
analysis, and bioinformatics [5]. In the context of music, GNNs are particularly well-suited for 
learning style-specific patterns that span across compositions. Unlike convolutional neural 
networks that require fixed spatial structures or recurrent neural networks that rely heavily on 
sequence order, GNNs can adapt to variable-sized graphs and flexibly model the topological 
properties of music data [6]. This flexibility is critical for music classification tasks, where the 
expressive features of style are often embedded in both short-term and long-term 
dependencies within and across phrases [7]. 

Despite this potential, the application of GNNs to symbolic music data remains underexplored. 
Existing methods often simplify music structure to a sequence or treat it as a spectrogram 
image, limiting the ability to capture complex stylistic traits. Moreover, prior works do not 
leverage cross-composition relational structures that might reveal similarities and stylistic 
conventions shared across multiple pieces within the same genre or composer. This study aims 
to address these gaps by proposing a GNN-based classification framework that models both 
intra-composition and inter-composition relations [8]. 

The proposed method represents each piece of symbolic music as a graph, where notes, chords, 
or measures serve as nodes and edges encode temporal, harmonic, or structural relationships. 
The model utilizes a dual-graph architecture, combining local structures within a piece with 
global structures that span multiple compositions. By learning embeddings that capture both 
the internal flow of music and its stylistic proximity to other works, the graph neural network 
(GNN) is able to classify musical styles with high accuracy and interpretability. Experimental 
evaluations demonstrate that the proposed model outperforms conventional deep learning 
baselines on multiple public datasets, offering improved generalization across a variety of 
genres. 

2. Literature Review 

Music style classification has been an active research area in music information retrieval, 
combining elements of machine learning, music theory, and digital signal processing [9]. Early 
approaches relied heavily on manual feature engineering, where musicologists or engineers 
extracted statistical attributes from audio signals or symbolic representations. These attributes 
included rhythmic complexity, pitch class distributions, tempo, tonal centroid features, and 
note density [10]. Such handcrafted features were then fed into traditional classifiers such as 
support vector machines, k-nearest neighbors, or decision trees, which performed reasonably 
well for broad genre classification tasks but struggled with subtle stylistic distinctions and data 
generalization. 

With the advent of deep learning, more sophisticated models have been introduced for 
automatic music classification [11]. Convolutional neural networks (CNNs) have been 
particularly popular for analyzing audio spectrograms, capturing local time-frequency patterns 
that are indicative of specific musical genres or styles. However, CNNs require fixed input 
shapes and are primarily designed for grid-like data, limiting their ability to process symbolic 
music that often varies in length and structural complexity. Recurrent neural networks (RNNs), 
particularly long short-term memory networks, were later used to capture the temporal 
dynamics of symbolic sequences, such as note or chord progressions. While RNNs improved 
sequence modeling, they too had limitations in handling hierarchical musical structures and 
long-range dependencies efficiently [12]. 

In response to these limitations, researchers have begun to explore more structured 
representations of music [13]. Symbolic music, including Musical Instrument Digital Interface 
(MIDI) and MusicXML formats, provides detailed event-level data such as pitch, duration, onset 
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time, and velocity. This data can be naturally transformed into graph structures, where each 
note or chord functions as a node, and temporal, harmonic, or structural relationships define 
the edges [14]. Representing music as a graph enables the modeling of relational patterns such 
as parallel voice leading, chord substitution, modulation, and motif recurrence, which are 
difficult to capture through sequence-based models [15]. 

GNNs have gained popularity in recent years due to their ability to model non-Euclidean data 
where nodes are connected through arbitrary edge patterns [16]. A GNN typically updates each 
node's representation by aggregating information from its neighbors through message passing 
mechanisms [17]. This approach is particularly advantageous in music style classification, 
where local and global structural relationships play a crucial role [18]. For example, jazz and 
classical compositions may share similar note sequences but differ in harmonic structure or 
rhythmic phrasing, which GNNs can learn through graph-based context aggregation [19]. 

Several prior studies have attempted to apply GNNs to music-related tasks, though many have 
focused on areas such as chord recognition, music generation, or melody harmonization [20]. 
One line of research has explored chord progression graphs, where chords are nodes and their 
sequential relationships define edges [21]. Another approach models rhythm trees or phrase 
structures to capture metrical hierarchy. However, the use of GNNs specifically for music style 
classification remains relatively underdeveloped. Existing models often restrict graph 
construction to simple note adjacency or temporal proximity, missing higher-order structural 
features like form (e.g., AABA, sonata-allegro), harmonic substitution patterns, or thematic 
variation. 

To capture these complex stylistic features, recent studies have proposed hybrid architectures 
that combine GNNs with other neural modules, such as attention mechanisms or convolutional 
encoders [22]. These models show promise in integrating local note-level patterns with 
broader compositional context, especially when trained on large symbolic music corpora. Some 
works have also investigated the use of inter-composition graphs, where nodes represent 
entire compositions and edges are defined based on stylistic similarity or shared motifs. These 
inter-piece graphs allow for transfer of stylistic information across works, improving model 
generalization in sparse or low-resource datasets [23]. 

Despite these advancements, there remain challenges in applying GNNs effectively to symbolic 
music. The diversity of possible graph representations—based on notes, chords, measures, or 
phrases—introduces variability in graph structure and scale. Furthermore, determining 
meaningful edge definitions that reflect stylistic relevance requires domain knowledge and 
careful design [24]. Finally, balancing the trade-off between model expressivity and 
computational complexity is an ongoing concern, especially as music graphs grow in size and 
dimensionality. 

This study addresses these challenges by introducing a unified GNN-based architecture for 
music style classification that incorporates both intra-piece and inter-piece relationships. The 
proposed model builds a dual-graph structure that captures local musical features within each 
piece while leveraging global stylistic similarities across the dataset. By learning contextualized 
embeddings through message passing and attention-based aggregation, the model offers a 
scalable and interpretable solution for graph-based music analysis [25]. The next section 
presents the methodology, detailing the graph construction, model architecture, and training 
strategy. 

3. Methodology 

3.1. Graph-Based Representation of Symbolic Music 

The foundation of the proposed model lies in transforming symbolic music data into structured 
graph representations that reflect both local and global musical relationships. Each 
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composition is represented as a directed, weighted graph where nodes correspond to musical 
events—typically notes or chords—extracted from symbolic formats such as MIDI files. Each 
node carries rich musical attributes, including pitch, onset time, duration, velocity (dynamics), 
and instrument type. These attributes are embedded into continuous vectors using learnable 
embedding layers. 

Edges in the graph are defined to reflect various relationships among musical events. Temporal 
edges connect notes that occur in sequence, capturing rhythmic flow and phrase development. 
Harmonic edges link simultaneously sounding or harmonically related notes, enabling the 
model to learn tonal coherence. Structural edges are also incorporated to represent higher-
order form-based relationships, such as repetition or motif recurrence across sections. The 
graph structure is designed to be flexible and expressive, allowing the model to capture diverse 
musical styles that rely on different compositional techniques. 

To maintain temporal ordering and motif continuity across longer passages, each piece is 
segmented into overlapping time windows, with each window forming a subgraph. These 
subgraphs are connected through cross-window edges that preserve structural context and 
allow stylistic features to propagate through the composition. Furthermore, to enable cross-
composition knowledge transfer, an inter-piece graph is constructed at a meta-level, where 
each node represents a full piece, and edges are defined by pairwise similarity scores computed 
through embedding similarity or stylistic proximity measures. This dual-graph framework 
enables the model to capture both localized compositional traits and dataset-level stylistic 
trends. 

3.2. Graph Neural Network Architecture 

The core of the proposed model is a multi-layer graph neural network designed to learn stylistic 
representations from the intra- and inter-piece graphs. The architecture follows a message-
passing paradigm, where each node updates its embedding by aggregating information from its 
neighbors. For intra-piece graphs, the model uses a combination of graph convolutional layers 
and gated graph recurrent units to capture both local harmonic patterns and temporal 
dynamics. This hybrid structure allows the model to differentiate between concurrent events 
and sequential transitions, which are both critical for style recognition. 

Each layer in the GNN applies a non-linear transformation to the aggregated messages, enabling 
the network to model complex interactions such as chord substitutions, syncopation, or modal 
mixture. To enhance the expressiveness of the node embeddings, a multi-head attention 
mechanism is integrated into the message-passing process. This mechanism allows the model 
to weigh the importance of different neighboring nodes dynamically, effectively capturing 
subtle variations in rhythmic emphasis or harmonic tension that are characteristic of specific 
musical styles. 

For inter-piece graphs, a separate GNN module processes composition-level embeddings. These 
embeddings are initialized using global statistics from the intra-piece embeddings, such as 
mean pitch, tempo profile, and harmonic density. The inter-piece GNN helps the model 
generalize across compositions by learning stylistic clusters, facilitating robust classification 
even in low-resource settings. After processing both graphs, the final node and graph 
embeddings are pooled and concatenated to form a unified style representation. 

3.3. Style Classification and Output Layer 

The unified embedding derived from the dual-graph architecture is fed into a feedforward 
classification network to predict the music style label. This classification head consists of 
several fully connected layers with dropout and batch normalization to prevent overfitting and 
promote generalization. The output layer uses a softmax activation function, producing a 
probability distribution over the set of possible style categories. 
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To account for class imbalance often present in music datasets—where certain genres like 
classical or pop may dominate—the model incorporates class-weighted loss functions during 
training. Specifically, the categorical cross-entropy loss is adjusted using inverse frequency 
weights to emphasize underrepresented styles. This ensures that the model remains sensitive 
to stylistic features across all categories, avoiding bias toward majority classes. 

In addition to classification, the model generates interpretable attention maps that highlight 
which parts of the graph contributed most to a given prediction. These attention weights are 
projected back onto the symbolic score, allowing human analysts to understand the musical 
basis of the model’s decisions. This feature is particularly valuable in educational and 
musicological contexts, where interpretability is crucial. 

3.4. Training Procedure and Evaluation Protocol 

The model is trained end-to-end using backpropagation with the Adam optimizer. Learning rate 
scheduling and early stopping based on validation loss are employed to ensure convergence 
and avoid overfitting. Training is performed in mini-batches, where each batch consists of 
subgraphs sampled from different compositions. The sampling strategy is designed to maintain 
diversity within each batch, improving generalization. 

To evaluate the model, a stratified k-fold cross-validation protocol is used, ensuring that each 
fold preserves the class distribution of the original dataset. Performance is measured using 
accuracy, precision, recall, and F1-score, providing a comprehensive view of the model’s 
classification capabilities. Additionally, confusion matrices are analyzed to identify which styles 
are most frequently confused, offering insights into stylistic overlap and model limitations. 

Ablation studies are conducted to assess the contribution of different components, such as 
intra-piece GNNs, inter-piece GNNs, and attention mechanisms. These studies confirm that the 
dual-graph architecture significantly improves performance over single-graph baselines. 
Finally, qualitative evaluations are performed by visualizing learned embeddings using 
dimensionality reduction techniques, revealing clear stylistic clusters aligned with human-
defined genre boundaries. 

4. Results and Discussion 

4.1. Overall Classification Performance Across Music Styles 

The proposed GNN-based model was evaluated on two widely used symbolic music datasets 
that include diverse compositions spanning classical, jazz, pop, and folk styles. The 
classification accuracy achieved by the model significantly outperformed traditional CNN and 
RNN baselines. Specifically, the dual-graph GNN framework achieved an average accuracy of 
89.3%, compared to 79.4% for the best-performing RNN-based model and 75.1% for the CNN-
based approach. These results demonstrate that graph-based representations can capture 
stylistic features more effectively than sequential or grid-based models. 

The performance gain is particularly notable for styles with complex harmonic or structural 
features, such as jazz and classical music. In jazz compositions, where chord substitutions and 
syncopation frequently occur, the model’s attention mechanism proved useful in identifying 
subtle rhythmic and harmonic patterns. For classical pieces, where motifs often recur in 
transformed forms across sections, the intra- and inter-piece graph structure enabled the 
model to trace such transformations and generalize stylistic features across time. The results 
indicate that modeling long-range and non-sequential dependencies through graphs 
significantly enhances stylistic classification. 
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Figure 1 presents a comparison of classification accuracy across different music styles and 
model architectures, highlighting the superior performance of the GNN-based framework. 

 

4.2. Impact of Dual-Graph Architecture on Feature Learning 

To assess the contribution of the dual-graph design, ablation studies were conducted by 
removing either the intra-piece or inter-piece graph module. When the inter-piece graph was 
removed, the model’s ability to generalize across compositions decreased, leading to a drop in 
F1-score from 0.90 to 0.83. This suggests that inter-composition relationships play an essential 
role in helping the model recognize global stylistic trends and avoid overfitting to individual 
compositions. 

Conversely, removing the intra-piece graph reduced the model’s capacity to learn localized 
harmonic and rhythmic patterns, resulting in confusion among closely related genres. For 
instance, without intra-piece structural modeling, classical and romantic compositions were 
frequently misclassified due to their shared instrumentation and harmonic language. These 
observations reinforce the idea that effective style classification depends on both localized 
event relationships and global compositional context. 

 

 
Figure 2 illustrates the impact of different graph modules on performance, using precision, 

recall, and F1-score metrics. 

4.3. Style Confusion Analysis and Embedding Visualization 

In addition to accuracy metrics, confusion matrices were analyzed to investigate how well the 
model distinguishes between stylistically similar genres. The matrix revealed that folk and pop 
styles were occasionally confused, particularly in compositions with shared rhythmic simplicity 
and major key tonality. However, the confusion between jazz and classical pieces was minimal, 
likely due to distinct harmonic languages and phrase structures. 
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To better understand the model’s learned representations, t-SNE was used to visualize the final 
graph embeddings for a sample of 500 compositions. The resulting plot showed clear clustering 
of styles, with boundaries that aligned well with human-defined genre labels. Interestingly, 
compositions by the same composer within a genre also tended to cluster closely, suggesting 
that the model captures not only genre-level patterns but also composer-specific stylistic 
nuances. 

 

 
Figure 3 shows the t-SNE projection of learned graph embeddings, where distinct genre 

clusters are visually separable in a two-dimensional space. 

 

4.4. Computational Efficiency and Scalability Evaluation 

The efficiency of the model is essential for practical applications such as music recommendation 
systems and real-time classification in digital audio workstations. The model was benchmarked 
on symbolic music datasets of varying sizes, ranging from 1,000 to 50,000 compositions. The 
results indicate that the dual-graph GNN model scales linearly with dataset size, with training 
times increasing gradually without performance degradation. 

In terms of inference speed, the model was able to classify a composition in under 0.2 seconds 
on a standard GPU setup, making it suitable for interactive music applications. Furthermore, 
memory consumption remained moderate due to the use of sparse graph representations and 
node-level attention masking, allowing the model to scale without requiring excessive 
computational resources. 

 
Figure 4 compares the training time and inference latency across models and dataset sizes, 

confirming the proposed framework’s scalability and efficiency. 
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5. Conclusion 

This study introduces a graph neural network (GNN)-based framework for music style 
classification that leverages the structural richness of symbolic music data. Unlike traditional 
models that process music as flat sequences or spectrogram images, the proposed approach 
constructs and learns from musical graphs that represent relationships between notes, chords, 
and larger compositional elements. By capturing both intra-piece and inter-piece structural 
patterns through a dual-graph design, the model effectively extracts stylistic features that 
reflect harmonic, rhythmic, and formal characteristics distinctive to different musical genres. 

Experimental results on benchmark symbolic music datasets demonstrate that the proposed 
model significantly outperforms traditional CNN- and RNN-based classifiers across various 
music styles. The GNN-based architecture achieved a higher classification accuracy, particularly 
in genres where structural complexity is crucial, such as jazz and classical music. The ablation 
studies further confirmed that both the intra- and inter-piece graph modules contribute 
meaningfully to model performance. The intra-piece module enables fine-grained analysis of 
harmonic and rhythmic patterns within a single composition, while the inter-piece module 
facilitates cross-compositional learning and improves generalization across the dataset. 

Beyond classification accuracy, the model provides interpretability through attention 
mechanisms and embedding visualizations. These tools offer insight into the features and 
musical elements that drive stylistic differentiation, bridging the gap between machine learning 
outcomes and musicological interpretation. Additionally, the model scales efficiently with 
dataset size and demonstrates low inference latency, making it suitable for integration into 
real-time music recommendation and analysis systems. 

While the model achieves strong performance, there are areas for further exploration. One 
limitation is the reliance on symbolic data, which may not always be available or fully 
representative of expressive performance characteristics. Future work could involve extending 
the graph construction process to include audio-derived features or expressive timing 
information. Moreover, expanding the range of stylistic categories beyond traditional genre 
labels to include compositional eras, regional idioms, or performance practices could further 
test the model’s flexibility and musicological relevance. 

In conclusion, this research highlights the effectiveness of GNNs for structured music analysis 
and demonstrates their capacity to model the rich relational dynamics of musical compositions. 
The dual-graph approach presents a scalable, interpretable, and high-performing framework 
for music style classification, paving the way for future advancements in AI-powered music 
understanding. 

References 

[1] Zhang S, Liu Y, Zhou M. Graph Neural Network and LSTM Integration for Enhanced Multi-Label Style 
Classification of Piano Sonatas[J]. Sensors, 2025, 25(3): 666. 

[2] Dokania S, Singh V. Graph representation learning for audio & music genre classification[J]. arXiv 
preprint arXiv:1910.11117, 2019. 

[3] Melo D F P, Fadigas I S, Pereira H B B. Graph-based feature extraction: A new proposal to study the 
classification of music signals outside the time-frequency domain[J]. PLoS One, 2020, 15(11): 
e0240915. 

[4] Jeong D, Kwon T, Kim Y, et al. Graph neural network for music score data and modeling expressive 
piano performance[C]//International conference on machine learning. PMLR, 2019: 3060-3070. 

[5] Prabhakar S K, Lee S W. Holistic approaches to music genre classification using efficient transfer 
and deep learning techniques[J]. Expert Systems with Applications, 2023, 211: 118636. 



Frontiers in Artificial Intelligence Research Volume 2 Issue 1, 2025 

ISSN: 3079-6342  

 

 34 

[6] Dua, M., Yadav, R., Mamgai, D., & Brodiya, S. (2020). An improved RNN-LSTM based novel approach 
for sheet music generation. Procedia Computer Science, 171, 465-474. 

[7] Cui, Y., Han, X., Chen, J., Zhang, X., Yang, J., & Zhang, X. (2025). FraudGNN-RL: A Graph Neural 
Network With Reinforcement Learning for Adaptive Financial Fraud Detection. IEEE Open Journal 
of the Computer Society. 

[8] Sheykhivand, S., Mousavi, Z., Rezaii, T. Y., & Farzamnia, A. (2020). Recognizing emotions evoked by 
music using CNN-LSTM networks on EEG signals. IEEE access, 8, 139332-139345. 

[9] Agarwal, S., Saxena, V., Singal, V., & Aggarwal, S. (2018, November). Lstm based music generation 
with dataset preprocessing and reconstruction techniques. In 2018 IEEE symposium series on 
computational intelligence (SSCI) (pp. 455-462). IEEE. 

[10] Shibata, G., Nishikimi, R., & Yoshii, K. (2020, October). Music Structure Analysis Based on an LSTM-
HSMM Hybrid Model. In ISMIR (pp. 23-29). 

[11] Yang, J., Li, P., Cui, Y., Han, X., & Zhou, M. (2025). Multi-Sensor Temporal Fusion Transformer for 
Stock Performance Prediction: An Adaptive Sharpe Ratio Approach. Sensors, 25(3), 976. 

[12] Deepak, S., & Prasad, B. G. (2020, July). Music Classification based on Genre using LSTM. In 2020 
Second International Conference on Inventive Research in Computing Applications (ICIRCA) (pp. 
985-991). IEEE. 

[13] Ycart, A., & Benetos, E. (2020). Learning and evaluation methodologies for polyphonic music 
sequence prediction with LSTMs. IEEE/ACM Transactions on Audio, Speech, and Language 
Processing, 28, 1328-1341. 

[14] Chen, S., Liu, Y., Zhang, Q., Shao, Z., & Wang, Z. (2025). Multi-Distance Spatial-Temporal Graph 
Neural Network for Anomaly Detection in Blockchain Transactions. Advanced Intelligent Systems, 
2400898. 

[15] Li, P., Ren, S., Zhang, Q., Wang, X., & Liu, Y. (2024). Think4SCND: Reinforcement Learning with 
Thinking Model for Dynamic Supply Chain Network Design. IEEE Access. 

[16] Coutinho, E., Weninger, F., Schuller, B., & Scherer, K. R. (2014, January). The munich lstm-rnn 
approach to the mediaeval 2014" emotion in music" task. In CEUR Workshop Proceedings (Vol. 
1263). 

[17] Lysal, A. S. J., Jothilakshmi, M. P., Muralidharan, P., & Rathipriya, S. S. (2025, April). Generation of 
music using LSTM. In AIP Conference Proceedings (Vol. 3279, No. 1). AIP Publishing. 

[18] Ren, S., Jin, J., Niu, G., & Liu, Y. (2025). ARCS: Adaptive Reinforcement Learning Framework for 
Automated Cybersecurity Incident Response Strategy Optimization. Applied Sciences, 15(2), 951. 

[19] Fulzele, P., Singh, R., Kaushik, N., & Pandey, K. (2018, August). A hybrid model for music genre 
classification using LSTM and SVM. In 2018 eleventh international conference on contemporary 
computing (IC3) (pp. 1-3). IEEE. 

[20] Conner, M., Gral, L., Adams, K., Hunger, D., Strelow, R., & Neuwirth, A. (2022). Music generation using 
an LSTM. arXiv preprint arXiv:2203.12105. 

[21] Zhang, S., Liu, Y., & Zhou, M. (2025). Graph Neural Network and LSTM Integration for Enhanced 
Multi-Label Style Classification of Piano Sonatas. Sensors, 25(3), 666. 

[22] Kaliakatsos-Papakostas, M., Gkiokas, A., & Katsouros, V. (2018). Interactive control of explicit 
musical features in generative LSTM-based systems. In Proceedings of the audio mostly 2018 on 
sound in immersion and emotion (pp. 1-7). 

[23] Garoufis, C., Zlatintsi, A., & Maragos, P. (2020, May). An LSTM-based dynamic chord progression 
generation system for interactive music performance. In ICASSP 2020-2020 IEEE international 
conference on acoustics, speech and signal processing (ICASSP) (pp. 4502-4506). IEEE. 

[24] Xu, H., Yang, Y., Chen, J., Wang, M., & Zhou, M. (2025). Symmetry-Aware Credit Risk Modeling: A 
Deep Learning Framework Exploiting Financial Data Balance and Invariance. Symmetry, 17(3), 341. 

[25] Ycart, A., & Benetos, E. (2018, April). Polyphonic music sequence transduction with meter-
constrained LSTM networks. In 2018 IEEE International Conference on Acoustics, Speech and 
Signal Processing (ICASSP) (pp. 386-390). IEEE. 


