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Abstract 

This study presents a privacy-aware risk control method based on federated learning, 
named FedRisk, which aims to mitigate the long-standing conflict between data 
isolation and information sharing among financial institutions. By integrating the 
FedAvg algorithm with differential privacy, the method allows banking, e-commerce, 
and insurance entities to update model parameters jointly without exposing raw user 
data. To address distributional discrepancies caused by non-independent and 
identically distributed (non-IID) data, a dynamic weighting scheme is applied. The 
approach is validated using real-world data from 820,000 users, covering contract 
performance, repayment behavior, and credit defaults. Compared with a conventional 
centralized XGBoost model, FedRisk shows a moderate drop in AUC from 0.874 to 0.861 
(approximately 1.5%) but effectively safeguards user privacy. In out-of-bag (OOB) 
testing, the F1-score improves by 3.7%, suggesting better adaptability to unseen data. 
Overall, FedRisk provides a practical balance between model performance and privacy 
preservation in financial risk detection across institutions. 
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1. Introduction 

With the rapid digital transformation of the financial industry, risk control has become an 
increasingly critical element in maintaining the stability of the financial ecosystem [1], 
ensuring the sound operation of financial institutions, and protecting customer rights and 
interests. As advanced technologies such as big data and artificial intelligence become deeply 
integrated with financial services, the volume of data accumulated by financial institutions is 
growing at an exponential rate [2]. In 2024, the average data storage volume of large financial 
institutions worldwide exceeded 10 petabytes (PB) per institution [3]. It is estimated that by 
2025, the total data volume of financial institutions in China will reach 48.6 zettabytes (ZB), 
accounting for 27.8% of the global total [4]. This data encompasses multi-dimensional 
information, including customer demographics, consumption behavior patterns, investment 
preferences and complex financial transaction activities, which provides a solid foundation for 
building high-precision risk control models [5]. However, severe data barriers still exist 
among financial institutions, acting like frozen walls that block data circulation and 
integration, resulting in the phenomenon of data silos [6]. For example, among regional 
financial institutions, the data sharing rate among banks, securities firms and insurance 
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companies is less than 10% [7]. Relevant studies indicate that more than 70% of financial 
institutions in China report significant obstacles to data sharing, making it difficult to fully 
explore the potential value of data or gain a comprehensive view of customer risk [8]. This has 
greatly limited the performance improvement of financial risk control models. Traditional 
centralized modeling approaches attempt to aggregate distributed data from different 
institutions for unified analysis. However, in practice, such approaches face numerous 
challenges. From the perspective of data transmission, large-scale cross-institutional data 
transfer not only consumes significant time and incurs high operational costs but is also prone 
to delays and interruptions, reducing overall efficiency [9]. More importantly, in centralized 
data storage, massive amounts of sensitive user data are gathered in one place [10]. Once the 
data security defense is breached, any leakage incident could have disastrous consequences 
[11]. In recent years, several major data breach incidents have shocked global financial 
markets. For instance, in 2023, a data breach at a well-known international financial 
institution resulted in the illegal theft and misuse of private data—including account 
information and transaction records—of more than five million customers, causing billions of 
U.S. dollars in direct economic losses [12]. The institution’s reputation was severely damaged 
and its stock price plummeted 20% within one week of the incident’s disclosure [13]. Market 
confidence dropped sharply, triggering potential systemic financial risks and inflicting a 
profound impact on financial order. According to related reports, in 2024, direct economic 
losses from data breaches in the financial industry exceeded USD 50 billion, with the average 
loss per incident reaching USD 3.86 million [14]. 

In this context, federated learning has emerged as a transformative distributed machine 
learning paradigm that opens up a new path to resolving inter-institutional data 
fragmentation and privacy protection challenges. Federated learning allows each 
participating party to collaboratively train models based on local data without transferring 
original data, thereby constructing a global model that integrates features from multiple 
sources while achieving the goal of “data availability without visibility.” In financial risk 
control scenarios, federated learning shows significant application potential. Banks possess 
core financial data such as deposit and loan records, which directly reflect customers’ 
financial status and credit history [15]. E-commerce platforms accumulate vast amounts of 
user behavior and payment data, which help reveal consumption patterns and preferences 
[16]. Insurance companies hold data on customers’ risk preferences and claim records, 
enabling evaluation from a risk coverage perspective. By applying federated learning, these 
heterogeneous data sources can be integrated to perform comprehensive, multi-dimensional 
risk assessments, thereby significantly improving the accuracy and completeness of financial 
risk control models [17]. Although federated learning presents new opportunities for financial 
risk control, its practical implementation still faces a range of serious challenges. On one hand, 
global regulations on data security and privacy protection are becoming increasingly 
stringent. For example, the General Data Protection Regulation (GDPR) of the European Union 
stipulates that in the event of a data breach, enterprises may be fined up to 4% of their global 
annual turnover or EUR 20 million, whichever is greater [18]. In China, regulations such as the 
Data Security Law and the Personal Information Protection Law have been successively 
introduced, imposing strict requirements on the data processing activities of financial 
institutions [19]. Relevant studies indicate that over 80% of financial institutions believe that 
current privacy protection regulations have a significant impact on their business operations. 
Under such constraints, how to further optimize privacy protection mechanisms while 
complying with legal requirements—ensuring data security while minimizing adverse effects 
on model performance—has become a critical problem that urgently needs to be solved [20]. 
On the other hand, due to differences in business models, customer groups, and data 
collection standards, the data held by different financial institutions often exhibits complex 
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non-independent and identically distributed (Non-IID) characteristics [21]. Studies have 
shown that in the financial domain, the average coefficient of variation in feature distributions 
across institutions exceeds 0.4. This imbalance in data distribution may lead to problems such 
as gradient inconsistency, slower convergence rates, and performance instability during 
model training, which significantly restricts the broad application and further development of 
federated learning in financial risk control. To more clearly illustrate the data characteristics 
of different financial institutions, Table 1 is presented below. As shown in the table, banks 
focus on financial credit data, e-commerce platforms emphasize consumer behavior data, and 
insurance companies concentrate on risk protection data. The substantial differences in data 
characteristics further highlight the necessity of data integration and the application of 
federated learning. 

 

Table 1. Comparison of Data Characteristics Among Different Financial Institutions 

Institution Type 
Primary Data 

Dimensions 
Data 

Characteristics 
Typical Data 

Examples 

Bank 
Savings, credit, 

account information 

High accuracy, low 
update frequency, 

strongly correlated 
with financial status 

User savings 
balance, loan 

repayment records 

E-commerce 

Consumption 
behavior, payment 

habits, browsing 
preferences 

Large volume, high 
real-time sensitivity, 

rapid dynamic changes 

User's average 
monthly spending, 

commonly used 
payment method 

Insurance 

Risk preference, 
claims history, health 

status (for health 
insurance) 

High 
specialization, closely 

related to risk 
evaluation, high level of 

data sensitivity 

Number of past 
claims, claim amount 

for major illnesses 

 

Therefore, conducting in-depth exploration and effectively addressing these challenges is of 
vital practical importance for promoting the large-scale application of federated learning in 
financial risk control and for enhancing the overall risk management capacity of the financial 
industry. This study is committed to proposing an innovative federated learning-driven 
cross-institutional financial risk modeling method, which aims to overcome existing technical 
bottlenecks by designing an efficient mechanism for privacy protection and collaborative 
model optimization. The goal is to provide a more reliable and efficient solution for financial 
risk control, and to support the financial sector in achieving stable and sustainable 
development along the dual tracks of data security and risk management. 

2. Methodology 

2.1. Overall Architecture of the FedRisk Framework 

The FedRisk framework constructed in this study is designed to enable collaborative training 
of a federated learning-based risk control model among nodes representing three types of 
financial institutions: banks, e-commerce platforms, and insurance companies [22]. The 
framework consists primarily of a parameter server and the local nodes of participating 
institutions. The parameter server is responsible for collecting model parameters uploaded by 
each node, performing aggregation and updates and then distributing the updated parameters 
[23]. Each local node conducts model training using its own local data and uploads model 
parameters based on instructions from the parameter server. 
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2.2. Federated Parameter Updating Based on FedAvg and Differential Privacy 

During the federated learning process, the FedAvg algorithm is employed to aggregate model 
parameters. Each institution’s local node conducts multiple rounds of training on its local 
dataset to generate parameter update values. These update values are then uploaded to the 
parameter server. The server performs weighted averaging of the uploaded updates based on 
the proportion of each node’s data volume relative to the total data volume. Specifically, 
suppose there are N nodes, the data volume at node i is ni, and the total data volume is  

 𝑁𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑛𝑖
𝑁
𝑖=1 . （1） 

If the model parameter update uploaded by node i is Δθi, then the global model parameter 
update is calculated as: 

 Δθglobal =
∑

ni
Ntotal

N
i=1 Δθi

1
 （2） 

This method effectively integrates the data characteristics of all nodes, thereby improving the 
generalization ability of the global model. To further strengthen privacy protection, a 
differential privacy mechanism is applied during the parameter upload phase. Specifically, 
after computing the model parameter update, each node adds noise sampled from a Laplace 
distribution to the update. Let the original parameter update be Δθ, and the added noise ε 

follow the distribution L(0,
Δ

ϵ
), where Δ denotes the sensitivity of the function and ε is the 

privacy budget. By adjusting the privacy budget ε, it is possible to balance the trade-off 
between privacy protection and model performance. A smaller ε value provides stronger 
privacy guarantees but may degrade model performance more significantly; conversely, a 
larger ε offers better model performance but weaker privacy protection. 

2.3. Dynamic Weight Adjustment Mechanism for Addressing Non-IID Data 

Considering that data from different financial institutions exhibit non-independent and 
identically distributed (Non-IID) characteristics, which may lead to training instability and 
performance degradation, this study introduces a dynamic weight adjustment mechanism. In 
each round of federated training, each node dynamically adjusts the weight of its parameter 
update in the global aggregation process according to the fitting degree between its local data 
and the global model. The specific calculation is as follows: let Li represent the loss function 
value of node i in the current training round, and let the average loss across all participating 
nodes be denoted as:  

 L =
∑ Li
N
i=1

N
 （3） 

Then, the dynamic weight of node i is given by:  

 wi =

1

Li

∑
1

Lj

N
j=1

 （4） 

Nodes whose data fit the global model more effectively play a greater role in the parameter 
aggregation process, while nodes with poorer fitting performance are assigned relatively 
lower weights. This adjustment enhances both the convergence speed and the overall 
performance of the model when handling non-independent and identically distributed 
(Non-IID) data. 

3. Results and Discussion 

3.1. Experimental Setup  

The experiment was conducted using a real-world collaborative dataset, covering 820,000 
users from three financial institutions. The dataset contains multi-dimensional features 
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including contract fulfillment, payment behavior, and credit default, and is used to construct a 
comprehensive financial risk control model. For performance benchmarking, a centralized 
XGBoost model, trained by aggregating all available data into a single processing unit, was 
selected to represent the performance of traditional modeling approaches [24]. Regarding 
evaluation metrics, AUC was used to assess the classification capability of the models, while 
F1-score was adopted to evaluate the overall performance on out-of-bag (OOB) samples. A 
higher AUC value indicates stronger classification ability, and a higher F1-score represents 
better model performance. To visually summarize the key settings of the experiment, Table 2 
is presented below. 
 

Table 2: Summary of Key Experimental Settings 

Category Details 

Dataset 
Covers three financial institutions, 820,000 users, 

including features such as contract fulfillment, payment 
behavior, and credit default 

Baseline Model Centralized XGBoost 

Evaluation Metrics 
AUC (classification performance), F1-score (overall 

performance on out-of-bag (OOB) samples) 
 

3.2. Presentation of Experimental Results 

In this experiment, the performance comparison between the FedRisk framework and the 
centralized XGBoost model is presented across multiple dimensions. In terms of the AUC 
metric, the centralized XGBoost model, leveraging the advantage of centralized access to all 
data, initially achieved an AUC value of 0.874, indicating its strong capability in accurately 
capturing classification boundaries under complete data integration. However, after 
introducing the federated learning architecture and privacy protection mechanisms, the AUC 
of FedRisk dropped to 0.861. Although the decrease is approximately 1.5%, its underlying 
causes merit further analysis. In FedRisk, each node adds differential privacy noise to the 
parameters during upload. While this ensures data privacy, it inevitably introduces a degree 
of perturbation to the parameter updates, which in turn affects the classification performance 
of the model [25,26]. Nevertheless, the slight decline in AUC demonstrates that FedRisk is able 
to maintain performance at a level comparable to the centralized XGBoost, even while 
fulfilling the critical objective of privacy preservation [27]. This result strongly validates the 
framework’s effectiveness in balancing privacy and performance. 

In the out-of-bag (OOB) sample test, FedRisk showed a more notable advantage, with its 
F1-score increasing by 3.7% compared to centralized XGBoost. Due to possible overfitting in 
the centralized training process, the centralized XGBoost model exhibited limited 
generalization capability on data not included in training. In contrast, FedRisk incorporates a 
dynamic weight adjustment mechanism, which plays a pivotal role [28]. During training, each 
node adjusts the contribution weight of its parameter update based on the degree of fit 
between its local data and the global model. This enables the model to capture common 
features across institutions more effectively, rather than being biased toward a particular 
institution’s local patterns. This mechanism effectively alleviates the challenges brought by 
non-independent and identically distributed (Non-IID) data, allowing FedRisk to make more 
accurate predictions on OOB samples, thereby significantly improving the F1-score and 
demonstrating its strong generalization capability. To clearly compare the performance of 
both models, Table 3 is provided below. 
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Table 3. Performance Comparison Between FedRisk and Centralized XGBoost 

Model AUC Value AUC Change 
F1-score on 

OOB Samples 
F1-score 

Change 

Centralized 
XGBoost 

0.874 – – – 

FedRisk 0.861 
Decreased by 

approx. 1.5% 

1.037× 
(assuming 

baseline F1-score 
is x) 

Increased by 
3.7% 

 

3.3. ummary of Result Analysis 

From the perspective of privacy protection and performance loss, differential privacy serves 
as a core technique for safeguarding sensitive data [29]. Its fundamental principle lies in 
adding noise that follows a Laplace distribution to obscure original information. The intensity 
of the noise is controlled by the privacy budget ε. When ε is set to a small value, the magnitude 
of the added noise is relatively large, resulting in stronger interference with the original data. 
This offers a higher level of privacy protection, but also leads to a greater reduction in the 
accuracy of model parameter updates, which in turn causes more noticeable degradation in 
model performance [30,31]. Conversely, a larger ε corresponds to smaller noise, thus 
reducing its negative impact on model performance, but the level of privacy protection is also 
relatively weakened. In this experiment, by appropriately setting the ε value, model 
performance degradation was successfully limited to approximately 1.5% while ensuring data 
privacy. However, it highlights a direction for future research: to explore more advanced and 
efficient privacy-preserving algorithms. For example, integrating homomorphic encryption 
techniques may help strengthen privacy protection without significantly compromising model 
performance [32,33]. 

In terms of handling non-independent and identically distributed (Non-IID) data, the 
advantages of the dynamic weight adjustment mechanism were fully demonstrated [34]. In 
federated learning settings, the data features and label distributions across financial 
institutions vary significantly. Traditional fixed-weight aggregation methods are unable to 
effectively address such distributional imbalances, often leading to training instability, slower 
convergence, and suboptimal final performance. The dynamic weight adjustment mechanism 
addresses this problem by evaluating the fit between local data and the global model in each 
round of training, using the local loss function value as the evaluation criterion. Nodes with 
better model-data fit receive greater weight in the global parameter update. This strategy 
enables the global model to preferentially absorb data features that align more closely with 
the overall pattern, accelerating convergence while enhancing adaptability to data 
heterogeneity and improving generalization. Future research can further integrate data 
mining methods to analyze prior knowledge of data distributions across institutions. For 
instance, clustering analysis can be used to identify similar feature clusters in the datasets of 
different institutions. Based on such analysis, more intelligent and accurate dynamic 
weighting strategies can be designed to further improve the model’s performance on Non-IID 
data and promote broader application of federated learning in the field of financial risk 
control. 

4. Conclusion 

This study proposes FedRisk, a federated learning-based risk control approach designed to 
address two major challenges in financial modeling: cross-institutional data silos and privacy 
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protection. By integrating the FedAvg algorithm with differential privacy and incorporating a 
dynamic weight adjustment mechanism, FedRisk enables financial institutions—including 
banks, e-commerce platforms, and insurance companies—to collaboratively train predictive 
models without exposing sensitive raw data. Experimental results based on a real-world 
dataset comprising 820,000 users demonstrate that FedRisk maintains a high level of 
classification performance, with only a marginal decrease in AUC (from 0.874 to 0.861, 
approximately 1.5%) compared to centralized XGBoost. More notably, it achieves a 3.7% 
improvement in F1-score on out-of-bag samples, indicating stronger generalization capacity. 
These outcomes validate the effectiveness of the proposed method in preserving data privacy 
while enhancing model robustness under non-independent and identically distributed 
(Non-IID) data conditions. The application of differential privacy ensures compliance with 
tightening regulatory requirements, while the dynamic weight adjustment mechanism 
improves model adaptability to heterogeneous data sources. Together, these innovations 
enable secure, scalable, and performance-efficient risk modeling across diverse financial 
entities. Future research will focus on integrating more advanced privacy-preserving 
techniques—such as homomorphic encryption or secure multi-party computation—and 
exploring intelligent weighting strategies informed by clustering or meta-learning, in order to 
further optimize performance under highly heterogeneous data distributions. 
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